Abstract

BackgroundCollagen fibers play an important role in tumor initiation, progression, and invasion. Our previous research has already shown that large-scale tumor-associated collagen signatures (TACS) are powerful prognostic biomarkers independent of clinicopathological factors in invasive breast cancer. However, they are observed on a macroscale and are more suitable for identifying high-risk patients. It is necessary to investigate the effect of the corresponding microscopic features of TACS so as to more accurately and comprehensively predict the prognosis of breast cancer patients.MethodsIn this retrospective and multicenter study, we included 942 invasive breast cancer patients in both a training cohort (n = 355) and an internal validation cohort (n = 334) from one clinical center and in an external validation cohort (n = 253) from a different clinical center. TACS corresponding microscopic features (TCMFs) were firstly extracted from multiphoton images for each patient, and then least absolute shrinkage and selection operator (LASSO) regression was applied to select the most robust features to build a TCMF-score. Finally, the Cox proportional hazard regression analysis was used to evaluate the association of TCMF-score with disease-free survival (DFS).ResultsTCMF-score is significantly associated with DFS in univariate Cox proportional hazard regression analysis. After adjusting for clinical variables by multivariate Cox regression analysis, the TCMF-score remains an independent prognostic indicator. Remarkably, the TCMF model performs better than the clinical (CLI) model in the three cohorts and is particularly outstanding in the ER-positive and lower-risk subgroups. By contrast, the TACS model is more suitable for the ER-negative and higher-risk subgroups. When the TACS and TCMF are combined, they could complement each other and perform well in all patients. As expected, the full model (CLI+TCMF+TACS) achieves the best performance (AUC 0.905, [0.873–0.938]; 0.896, [0.860–0.931]; 0.882, [0.840–0.925] in the three cohorts).ConclusionThese results demonstrate that the TCMF-score is an independent prognostic factor for breast cancer, and the increased prognostic performance (TCMF+TACS-score) may help us develop more appropriate treatment protocols.

Highlights

  • Collagen fibers play an important role in tumor initiation, progression, and invasion

  • TACS1-8 were mainly based on the macroscopic appearance of collagen morphological changes in the tumor microenvironment

  • All tumor-associated collagen signatures (TACS)-score description in the text refers to the TACS1-8-score and TACS is the abbreviation for TACS1-8

Read more

Summary

Introduction

Collagen fibers play an important role in tumor initiation, progression, and invasion. Our previous research has already shown that large-scale tumor-associated collagen signatures (TACS) are powerful prognostic biomarkers independent of clinicopathological factors in invasive breast cancer. They are observed on a macroscale and are more suitable for identifying high-risk patients. Collagen fibers, which are the important component of ECM and may promote or inhibit cell motion, either impede tumor invasion via acting as a barrier against migration [6] or facilitate invasion through providing highspeed “highways” according to their orientation [7]. In vitro research showed that collagen orientations are crucial to tumor cell invasion [11], and in vivo study proven that collagen signature is an important prognostic factor [12]. The microscopic features of TACS have not been systematically investigated

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call