Abstract
The clinical feasibility and potential of curved LiTT trajectories through steerable needles has yet to be investigated. This is the focus of our work. We propose a GPU-accelerated computer-assisted planning (CAP) algorithm for steerable needle insertions that generates optimized curved 3D trajectories with maximal ablation of the amygdalohippocampal complex and minimal collateral damage to nearby structures, while accounting for a variable ablation diameter ( 5-15 mm). Simulated trajectories and ablations were performed on 5 patients with mesial temporal sclerosis (MTS), which were identified from a prospectively managed database. The algorithm generated obstacle-free paths with significantly greater target area ablation coverage and lower PHG ablation variance compared to straight line trajectories. The presented CAP algorithm returns increased ablation of the amygdalohippocampal complex, with lower patient risk scores compared to straight-line trajectories. This is the first clinical application of preoperative planning for steerable needle based LiTT. This study suggests that steerableneedles have the potential to improve LiTT procedure efficacy whilst improving the safety and should thus be investigated further.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.