Abstract

Mitochondria are crucial for many aspects of cellular homeostasis and a sufficiently negative membrane potential (Δ ψ) across the mitochondrial inner membrane (MIM) is required to sustain most mitochondrial functions including ATP generation, MIM fusion, and calcium uptake and release. Here, we present a microscopy approach for automated quantification of Δ ψ and mitochondrial position, shape and calcium handling in individual living cells. In the base protocol, cells are stained with tetramethyl rhodamine methyl ester (TMRM), a fluorescent cation that accumulates in the mitochondrial matrix according to Δ ψ, and visualized using video-microscopy. Next, the acquired images are processed to generate a mitochondria-specific binary image (mask) allowing simultaneous quantification of mitochondrial TMRM fluorescence intensity, shape and position. In a more advanced version of this protocol a mitochondria-targeted variant of green fluorescent protein (mitoAcGFP1) is expressed to allow mask making in TMRM-stained cells. The latter approach allows quantification of Δ ψ in cells with a substantially depolarized Δ ψ. For automated quantification of mitochondrial calcium handling in space and time mitoAcGFP1-expressing cells are stained with rhod-2, a fluorescent calcium indicator that accumulates in the mitochondrial matrix. In this paper, a detailed step-by-step description of the above approaches and its pitfalls is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.