Abstract

A system for robotically assisted retinal surgery has been developed to rapidly and safely place lesions on the retina for photocoagulation therapy. This system provides real-time, motion stabilized lesion placement for typical irradiation times of 100 ms. The system consists of three main subsystems: a digital-based global tracking subsystem; a fast, analog local tracking subsystem; and a confocal reflectance subsystem to control lesion parameters dynamically. We have reported previously on these individual subsystems. This paper concentrates on the development of a second hybrid system prototype. Considerable progress has been made toward reducing the footprint of the optical system, simplifying the user interface, fully characterizing the analog tracking system, using measurable lesion reflectance parameters to develop a noninvasive method to infer lesion depth, and integrating the subsystems into a seamless hybrid system. These system improvements and progress toward a clinically significant system are covered in detail within this paper. The tracking algorithms and concepts developed for this project have considerable potential for application in many other areas of biomedical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.