Abstract

Malunion after long bone fracture results in an incorrect position of the distal bone segment. This misalignment may lead to reduced function of the limb, early osteoarthritis and chronic pain. An established treatment option is a corrective osteotomy. For complex malunions, a single-cut rotational osteotomy is sometimes preferred in cases of angular deformity in three dimensions. However, planning and performing this type of osteotomy is relatively complex. This report describes a computer-assisted method for 3-D planning and realizing a single-cut rotational osteotomy with a patient-specific cutting guide for orienting the osteotomy and an angled jig for adjusting the rotation angle. The accuracy and reproducibility of the method is evaluated experimentally using plastic bones. In addition, complex rotational deformities are simulated by a computer to investigate the relation between deformity and correction parameters. The computed relation between deformity and correction parameters enables the surgeon to judge the feasibility of a single-cut rotational osteotomy. This appears possible for deformities combining axial misalignment with sufficient axial rotation. The proposed 3-D method of preoperative planning and transfer with a patient-specific cutting guide and angled jig renders the osteotomy procedure easily applicable, accurate, reproducible, and is a good alternative for complex and expensive navigation systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.