Abstract

This contribution introduces a computer- and robot-assisted framework for stereotactic neurosurgery on small animals. Two major elements of this framework are presented in detail: a robotic stereotactic assistant and the software framework for placement of probes into the brain. The latter integrates modules for registration, insertion control, and preoperative path planning. Two options for path planning are addressed: (a) atlas-based planning and (b) image-based planning based on computed tomography data. The framework is tested performing robot-assisted insertion of microelectrodes and acquisition of electrophysiological recordings in vivo. Concepts for data analysis pointing towards a mapping of position and neural structure to functional data are introduced. Results show that the presented framework allows precise small animal stereotaxy and therefore offers new options for brain research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.