Abstract

The manual archaeological projectile point morphological classification is an extensive and complex process since it involves a large number of categories. This article presents an algorithm that automatically makes this process, based on the projectile point digital image and using a classification scheme according to global archaeological approaches. The algorithm supports different conditions such as changes in scale and quality of the image. Moreover, it requires only a uniform background and an approximate north--south projectile point orientation. The principal computer methods that compose the algorithm are the curvature scale space map (CSS-map), the gradient contour on the projectile point, and the support vector machines (SVM) algorithm. Finally, the classifier was trained and tested on a dataset of approximately 800 projectile points images, and the results have shown a better performance than other shape descriptors such as Pyramid of Histograms of Orientation Gradients (PHOG), Histogram of Orientation Shape Context (HOOSC) (both used in a bag-of-words context), and geometric moment invariants (Hu moments).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.