Abstract

In this paper we will present the family of Newton algorithms. From the computer algebra point of view, the most basic of them is well known for the local analysis of plane algebraic curves f(x,y)=0 and consists in expanding y as Puiseux series in the variable x. A similar algorithm has been developped for multi-variate algebraic equations and for linear differential equations, using the same basic tools: a “regular” case, associated with a “simple” class of solutions, and a “simple” method of calculus of these solutions; a Newton polygon; changes of variable of type ramification; changes of unknown function of two types y=ctμ+ϕ or y=exp (c/tμ)ϕ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.