Abstract

The present research study has been undertaken to carry out slope stability evaluation of the Jhika Gali landslide in Pakistan using GeoStudio. For this purpose, the site geometry of the existing slope adjacent to the slided one was measured and samples were collected from the site. The in-situ moisture content was 14% and dry unit weight was 18.63 kN/m3. Unconfined compression tests and unconsolidated-undrained (UU) triaxial tests were performed on samples reconstituted at in-situ dry unit weight, standard Proctor and modified Proctor maximum dry unit weights. The test results show that the shear strength and deformation parameters, i.e., undrained shear strength, angle of internal friction and deformation modulus decreased from 200 kPa to 90 kPa, 23° to 12° and 51 MPa to 32 MPa, respectively, with an increase in the percentage of saturation from 35% to 95% at a specific dry unit weight. The slope was also modeled in GeoStudio for limit equilibrium analysis, and slope stability analysis was performed using the values of undrained shear strength and the angle of internal friction as determined in the laboratory at varying degrees of saturation. The limit equilibrium analysis showed that the factor of safety reduces from 1.854 to 0.866 as the saturation of material increases from 35% to 95%. The results also suggest that, as the percentage of saturation increases above 85%, the soil loses its shear strength significantly and gains in bulk unit weight, so at this stage the material starts sliding. Additionally, slope stability analysis was carried out by changing the slope geometry in three different ways, i.e., by reducing the height of the slope, adding a counterweight at the toe of the slope and by making benches on the slope. The results of GeoStudio analysis showed that the slope will be stable even above 85% degree of saturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call