Abstract

The San-Ao Decoction (SAD) is a well-known Traditional Chinese Medicine (TCM) formula used to alleviate respiratory symptoms, including asthma. However, its precise mechanisms of action have remained largely unknown. In this study, we utilized computer-aided approaches to explore these mechanisms. Firstly, we conducted a comprehensive analysis of the chemical composition of SAD, which allowed us to identify the 28 main ingredients. Then, we employed computer simulations to investigate the potential active ingredients of SAD and the corresponding binding sites of transient receptor potential vanilloid 1 (TRPV1). The simulations revealed that D509 and D647 were the potential binding sites for TRPV1. Notably, molecular dynamics (MD) studies indicated that site D509 may function as an allosteric site of TRPV1. Furthermore, to validate the computer-aided predictions, we performed experimental studies, including in vitro and in vivo assays. The results of these experiments confirmed the predictions made by our computational models, providing further evidence for the mechanisms of action of San-Ao Decoction in asthma treatment. Our findings demonstrated that: i) D509 and D647 of TRPV1 are the key binding sites for the main ingredients of SAD; ii) SAD or its main ingredients significantly reduce the influx of Ca2+ through TRPV1, following the TCM principle of “Jun, Chen, Zuo, Shi”; iii) SAD shows efficiency in comprehensive in vivo validation. In conclusion, our computer-aided investigation of San-Ao Decoction in asthma treatment has provided valuable insights into the therapeutic mechanisms of this TCM formula. The combination of computational analysis and experimental validation has proven effective in enhancing our understanding of TCM and may pave the way for future discoveries in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call