Abstract
In an effort to face the multiple drug-resistant bacteria, various approaches have been discovered to design potent compounds and search new targets through computational design tools. With an aim to identify selective inhibitors against filamentous temperature-sensitive mutant Z (FtsZ), a library of Phase database compounds have been virtually screened. High-throughput virtual screening of compounds against Staphylococcal epidermidis FtsZ protein (4M8I) was performed using three sequential docking modes like high-throughput virtual screening, Glide standard precision, followed by Glide extra precision. Four top-ranked compounds were selected from molecular mechanics-generalized Born surface area (MM-GBSA) binding energy with better predicted free binding energies of - 89.309, - 54.382, - 53.667, and - 52.133 kcal/mol, respectively. It is also showed that the contribution of van der Waals and electrostatic solvation energy terms are playing a major part to make the hit molecule (T6288784) binding to S. epidermidis FtsZ protein. The result of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and energy gap analysis predicts the molecular reactivity and stability of hit molecules. Subsequently, Lipinski's rule of five and properties of absorption, distribution, metabolism, and excretion (ADME) were to calculate their bioavailability. The average binding energy - 9.67 kcal/mol of the best proposed hit molecule (T6288784) was found with half-maximal inhibitory concentration (IC50) value to be 75.53 nM. A 15-ns molecular dynamics simulation study revealed the stable conformation of hit molecule. On a wide-range research discipline, in silico studies of our proposed compound confirm promising results and can be successfully used towards the development of novel FtsZ inhibitor with better binding affinity. Graphical Abstract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.