Abstract

Mortality rate due to fatal heart disease (HD) or cardiovascular disease (CVD) has increased drastically over the world in recent decades. HD is a very hazardous problem prevailing among people which is treatable if detected early. But in most of the cases, the disease is not diagnosed until it becomes severe. Hence, it is requisite to develop an effective system which can accurately diagnosis HD and provide a concise description for the underlying causes [risk factors (RFs)] of the disease, so that in future HD can be controlled only by managing the primary RFs. Recently, researchers are using various machine learning algorithms for HD diagnosis, and neural network (NN) is one among them which has attracted tons of people because of its high performance. But the main obstacle with a NN is its black-box nature, i.e., its incapability in explaining the decisions. So, as a solution to this pitfall, the rule extraction algorithms can be very effective as they can extract explainable decision rules from NNs with high prediction accuracies. Many neural-based rule extraction algorithms have been applied successfully in various medical diagnosis problems. This study assesses the performance of rule extraction algorithms for HD diagnosis, particularly those that construct rules recursively from NNs. Because they subdivide a rule’s subspace until the accuracy improves, recursive algorithms are known for delivering interpretable decisions with high accuracy. The recursive rule extraction algorithms’ efficacy in HD diagnosis is demonstrated by the results. Along with the significant data ranges for the primary RFs, a maximum accuracy of 82.59% is attained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.