Abstract

The present work illustrates the employment of an Automatic Scale-up Algorithm (ASA) to design a 200 cm2 multiple serpentine (MS) flow field for a Polymer Electrolyte Fuel Cell (PEFC). With a fixed fuel cell active area and total pressure drop, the algorithm provides the flow-field design solution characterized by a specific set of parameters including channel width, rib width, channel height, covering factor, number of switchbacks, Reynolds number and pressure drop. It is known that a correlation exists between the mass flow passing through the electrode and the pressure drop, influencing the fuel cell performance. A pressure drop range from 5 to 45 kPa with steps of 5 kPa has been investigated. Numerical simulations performed on each geometry set have permitted a comparison of the flow-field total pressure drop with the analytical compressible calculation, and to evaluate the mass flow rate passing through the electrode and in the flow field channels separately. A comparison between ASA and CFD results has highlighted that the methodology is able to find a flow-field geometry that matches target geometrical and fluid dynamic requirements. A better agreement between the Automatic Scale-up Algorithm and direct CFD pressure drop calculation has been obtained taking into account the gas compressibility effects. The increase of the mass flow rate vs flow-field total pressure drop is also reported. A better understanding of the gas shorting phenomenon has been achieved by CFD post-processing, in terms of gas velocity profiles and pressure drop between adjacent channels. Since the gas shorting is a pressure driven effect, the total mass flow rate percentage passing through the porous backing has been related to the shorting velocity and geometrical parameters of the porous backing; moreover proportionality between “shorting” pressure drop and ratio of flow field total pressure drop and switchback number has been highlighted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call