Abstract

Motivated by growing amounts of data and enhanced resolution from orbiters and rovers, systems for computer‐aided decision support are becoming invaluable in planetary exploration. This article illustrates the value of such systems for a case study on the exploration of the Martian geology, along with improvements in assessing the favorability for landing. Under the current technical status quo for landing and rover's mobility, results show that Eastern Margaritifer Terra and Meridiani Planum stand out due to their high density of scientific targets and flat surfaces. However, our approach allows us to scale the analysis using different scenarios for the entire planet, quantifying the substantial benefits should higher landing elevations and higher rover speeds be realized in the future. This analysis offers new insights into the interplay of technical and scientific constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.