Abstract

Computer aided engineering (CAE) methodologies are increasingly being applied to assist the design of spark-ignition (SI) engine exhaust aftertreatment systems in view of the stage III and IV emissions standards. Following this trend, the design of diesel exhaust aftertreatment systems is receiving more attention owing to the capabilities of recently developed mathematical models. The design of diesel exhaust systems must cope with three major aftertreatment categories: diesel oxidation catalysts, diesel particulate filters and de-NOx catalytic converters. An integrated CAE methodology that could assist the design of all these classes of systems is described in this paper. It employs the following computational tools: a computer code for modelling transient exhaust system heat transfer, a computer code for modelling the transient operation of a diesel oxidation or a de-NOx catalytic converter, a database containing chemical kinetics data for a variety of oxidation and de-NOx catalyst formulations and a computer code for modelling the loading and regeneration behaviour of a wall-flow filter, assisted by catalytic fuel additives. Application of the CAE methodology, which helps the exhaust aftertreatment system design engineer to meet the future emissions standards, is highlighted by referring to a number of representative case studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call