Abstract

Abstract A most important progress in civilization was the introduction of mass production. HPDC molds are one of main technologies for mass production. Due to the high velocity of the liquid metal, aluminum die-casting is so complex where flow momentum is critical matter in the mold filling process. Actually in complex parts, it is almost impossible to calculate the exact mold filling performance with using experimental knowledge. Due to this condition in the design procedure, the simulation is becoming more important. Simulation can make a casting system optimal and also elevate the casting quality with less experiment. The most advantage of using simulation programs is the time and cost saving of the casting layout design. The condition selection of HPDC mainly relied on the experience and expertise of an individual worker in casting industries. Systematic knowledge accumulation of die casting process was an essential matter to get optimal process conditions. In present casting industries, product development paradigm is shifting from traditional trial-and-error to proof-of-concept based on CAE -enabled simulation. Due to the high velocity of the dynamic behavior of the casting system in working conditions, aluminum die casting is a very complex process in which flow momentum is a critical issue in the mold filling process. In the new production development paradigm, CAE simulation plays an important role because it models the entire casting process and reveals the dynamic behavior of the casting system. In this research, CAE simulation was performed by using the simulation software (AnyCasting) in order to optimize the gate and runner design of an automobile part (Oil Pan_BR2E) which is well known and complicated to achieve a good casting layout. Filling analysis was used to find out the size and location of the gate and proper runner system design. By the modification of the gate and runner system and the configuration of overflows, internal porosities caused by air entrapments were predicted and reduced remarkably. With the solidification analysis, internal porosities caused by the solidification shrinkage were also predicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call