Abstract

In our quest to discover effective inhibitors against severe acute respiratory syndrome coronavirus 2 helicase, a diverse set of more than 300 naturally occurring antiviral metabolites was investigated. Employing advanced computational techniques, we initiated the selection process by analyzing and comparing the co-crystallized ligand (VXG) of the severe acute respiratory syndrome coronavirus 2 helicase protein (PDB ID: 5RMM) to identify compounds with structurally similar features and potential for comparable binding. Through structural similarity and pharmacophore research, 13 compounds that shared important characteristics with VXG were pinpointed. Subsequently, these candidates were subjected to molecular docking to identify seven compounds that demonstrated favorable energy profiles and accurate binding to the severe acute respiratory syndrome coronavirus 2 helicase. Among these, mycophenolic acid emerged as the most promising candidate. To ensure the safety and viability of the selected compounds, we conducted ADMET tests, which confirmed the favorable characteristics of mycophenolic acid, and the safety of atropine and plumbagin. Building on these results, we performed additional analyses on mycophenolic acid, including various molecular dynamics simulations. These investigations demonstrated that mycophenolic acid exhibited optimal binding to the severe acute respiratory syndrome coronavirus 2 helicase, maintaining flawless dynamics throughout the simulations. Furthermore, the Molecular Mechanics Poisson–Boltzmann Surface Area tests provided strong evidence that mycophenolic acid successfully formed a stable connection with the severe acute respiratory syndrome coronavirus 2 helicase, with a calculated free energy value of −294 kJ mol−1. These encouraging findings provide a solid foundation for further research, including in vitro and in vivo studies, on the three identified compounds. The potential efficacy of these compounds as treatment options for coronavirus-19 warrants further exploration and may hold significant promise in the ongoing fight against the pandemic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call