Abstract

FGFR-1 is an oncogenic kinase involved in several cancers. FGFR1-specific inhibitors have shown promising results against several human cancers prompting us to model this interesting target. Toward the end, we implemented elaborate ligand-based and structure-based computational workflows to explore the pharmacophoric requirements for potent FGFR-1 inhibitors. Results & methodology: Structure-based and ligand-based modeling applied on 59 diverse FGFR-1 inhibitors yielded novel pharmacophore and quantitative structure-activity relationship models that were used to scan the National Cancer Institute's structural database for novel leads. Four potent hits were captured, with the most active having IC50 of 426 nM. Identities and purities of active hits were established using nuclear magnetic resonance and mass spectroscopy. Elaborate ligand-based (pharmacophore/quantitaive structure-activity relationship) and structure-based (docking-based comparative intermolecular contacts analysis) modeling provided deep understanding of ligand binding within FGFR-1 as evidenced by the virtually captured new potent leads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.