Abstract
Objective:Compared with the healthy control (HC) group, the brain structure and function of schizophrenia (SZ) patients are significantly abnormal, so brain imaging methods can be used to achieve the aided diagnosis of SZ. However, a brain network based on brain imaging data is non-Euclidean, and its intrinsic features cannot be learned effectively by general deep learning models. Furthermore, in the majority of existing studies, brain network features were manually specified as the input of machine learning models. Methods:In this study, brain functional network constructed from the subject’s fMRI data is analyzed, and its small-world value is calculated and t-tested; the node2vec algorithm in graph embedding is introduced to transform the constructed brain network into low-dimensional dense vectors, and the brain network’s non-Euclidean spatial structure characteristics are retained to the greatest extent, so that its intrinsic features can be extracted by deep learning models; GridMask is used to randomly mask part of the information in the vectors to enhance the data; and then features can be extracted using the Transformer model to identify SZ. Results:It is again shown that the small-world value of the brain network in SZ is significantly lower than that in HC by t-test (p=0.014¡0.05). 97.78% classification accuracy is achieved by the proposed methods (node2vec + GridMask + Transformer) in 30 SZ patients and 30 healthy people. Conclusion:The experiment shows that the node2vec used in this paper can effectively solve the problem of brain network features being difficult to learn by general deep learning models. The high-precision computer-aided diagnosis of SZ can be obtained by combining node2vec with Transformer and GridMask. Significance:The proposed methods in the paper are expected to be used for aided diagnosis of SZ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.