Abstract

In this work, a computer aided diagnosis (CAD) system to improve the diagnostic accuracy and consistency in image interpretation of pulmonary tuberculosis is proposed. The lung fields are segmented using region growing and edge reconstruction algorithms. Texture features are extracted from the diseased regions manifested as consolidations, cavitations and nodular opacities. A wrapper approach that combines cuckoo search optimisation and one-against-all SVM classifier is used to select optimal feature subset. Cuckoo search algorithm is implemented first using entropy and second without using entropy measure. Training is done with the selected features using one-against-all (SVM) classifier. Among the 98 features extracted from the diseased regions, 47 features are selected with entropy measure giving 92.77% accuracy. When entropy measure is not used, 51 features are selected giving 91.89% accuracy. From the results, it is inferred that selecting appropriate features for training the classifier has an impact on the classifier performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.