Abstract

This work identifies effective computable features from the Breast Imaging Reporting and Data System (BI-RADS), to develop a computer-aided diagnosis (CAD) system for breast ultrasound. Computerized features corresponding to ultrasound BI-RADs categories were designed and tested using a database of 283 pathology-proven benign and malignant lesions. Features were selected based on classification performance using a “bottom-up” approach for different machine learning methods, including decision tree, artificial neural network, random forest and support vector machine. Using 10-fold cross-validation on the database of 283 cases, the highest area under the receiver operating characteristic (ROC) curve (AUC) was 0.84 from a support vector machine with 77.7% overall accuracy; the highest overall accuracy, 78.5%, was from a random forest with the AUC 0.83. Lesion margin and orientation were optimum features common to all of the different machine learning methods. These features can be used in CAD systems to help distinguish benign from worrisome lesions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.