Abstract

Tuberculosis caused by Mycobacterium tuberculosis have been a major challenge for medical and healthcare sectors in many underdeveloped countries with limited diagnosis tools. Tuberculosis can be detected from microscopic slides and chest X-ray but as a result of the high cases of tuberculosis, this method can be tedious for both microbiologist and Radiologist and can lead to miss-diagnosis. The main objective of this study is to addressed these challenges by employing Computer Aided Detection (CAD) using Artificial Intelligence-driven models which learn features based on convolution and result in an output with high accuracy. In this paper, we described automated discrimination of X-ray and microscopic slide images of tuberculosis into positive and negative cases using pretrained AlexNet Models. The study employed Chest X-ray dataset made available on Kaggle repository and microscopic slide images from both Near East university hospital and Kaggle repository. For classification of tuberculosis and healthy microscopic slide using AlexNet+Softmax, the model achieved accuracy of 98.14%. For classification of tuberculosis and healthy microscopic slide using AlexNet+SVM, the model achieved 98.73% accuracy. For classification of tuberculosis and healthy chest X-ray images using AlexNet+Softmax, the model achieved accuracy of 98.19%. For classification of tuberculosis and healthy chest X-ray images using AlexNet+SVM, the model achieved 98.38% accuracy. The result obtained has shown to outperformed several studies in the current literature. Future studies will attempt to integrate Internet of Medical Things (IoMT) for the design of IoMT/AI-enabled platform for detection of Tuberculosis from both X-ray and Microscopic slide images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.