Abstract

COVID-19 is a virus that has been declared an epidemic by the world health organization and causes more than 2 million deaths in the world. To achieve this, computer-aided automatic diagnosis systems are created on medical images. In this study, an image processing and machine learning-based method is proposed that enables segmenting of CT images taken from COVID-19 patients and automatic detection of the virus through the segmented images. The main purpose of the study is to automatically diagnose the COVID-19 virus. The study consists of three basic steps: preprocessing, segmentation and classification. Image resizing, image sharpening, noise removal, contrast stretching processes are included in the preprocessing phase and segmentation of images with Expectation–Maximization-based Gaussian Mixture Model in the segmentation phase. In the classification stage, COVID-19 is classified as positive and negative by using kNN, decision tree, and two different ensemble methods together with the kernel support vector machines method. In the study, two different CT datasets that are open to the public and a mixed dataset created by combining these datasets were used. The best accuracy values for Dataset-1, Dataset-2 and Mixed Dataset are 98.5%, 86.3%, 94.5%, respectively. The achieved results prove that the proposed approach advances state-of-the-art performance. Within the scope of the study, a GUI that can automatically detect COVID-19 has been created.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.