Abstract

ObjectiveThe purpose of the study was to evaluate the accuracy of 3.0-T breast MRI interpretation using manual and fully automated kinetic analyses.Material and methodsManual MRI interpretation was done on an Advantage Workstation. Retrospectively, all examinations were processed with a computer-aided detection (CAD) system. CAD data sets were interpreted by two experienced breast radiologists and two residents. For each lesion automated analysis of enhancement kinetics was evaluated at 50% and 100% thresholds. Forty-nine malignant and 22 benign lesions were evaluated.ResultsUsing threshold enhancement alone, the sensitivity and specificity of CAD were 97.9% and 86.4%, respectively, for the 50% threshold, and 97.9% and 90%, respectively, for the 100% threshold. Manual interpretation by two breast radiologists showed a sensitivity of 84.6% and a specificity of 68.8%. For the same two radiologists the mean sensitivity and specificity for CAD-based interpretation was 90.4% (not significant) and 81.3% (significant at p < 0.05), respectively. With one-way ANOVA no significant differences were found between the two breast radiologists and the two residents together, or between any two readers separately.ConclusionCAD-based analysis improved the specificity compared with manual analysis of enhancement. Automated analysis at 50% and 100% thresholds showed a high sensitivity and specificity for readers with varying levels of experience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.