Abstract

As one of the most promising lab-on-a-chip systems, flow-based microfluidic biochips are being increasingly used for automatically executing various laboratory procedures in biology and biochemistry, such as enzyme-linked immunosorbent assay, point-of-care diagnosis, and so on. As manufacturing technology advances, the characteristic dimensions of biochip systems keep shrinking, and tens of thousands of microvalves can now be integrated into a coin-sized microfluidic platform, making the conventional manual-based chip design no longer applicable. Accordingly, computer-aided design (CAD) of microfluidics has attracted considerable research interest in the EDA community over the past decade. This review article presents recent advances in the design automation of biochips, involving CAD techniques for architectural synthesis, wash optimization, testing, fault diagnosis, and fault-tolerant design. With the help of these CAD tools, chip designers can be released from the burden of complex, large-scale design tasks. Meanwhile, new chip architectures can be explored automatically to open new doors to meet requirements from future large-scale biological experiments and medical diagnosis. We discuss key trends and directions for future research that are related to enable microfluidics to reach its full potential, thus further advancing the development and progression of the microfluidics industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call