Abstract
An algorithm for computer design (calculated determination of the composition) of a multicomponent antifriction material is proposed. First, the minimum initial set of composite characteristics is determined experimentally for a number of controlling parameters from tribological and mechanical tests. The subsequent computer-aided design of the material in the form of constructing the corresponding response surfaces in the space of states makes it possible to identify the range of variation of the controlling parameters to provide the specified operational and technological characteristics. This approach is illustrated by the computer-aided design of the material composition (feedstock) in the form of an extrudable polymer composite based on ultra-high molecular weight polyethylene (UHMWPE) for applications in additive technologies. An optimal formulation is proposed for the UHMWPE + n wt % HDPE-g-SMA + n wt % PP ternary mixture that has tribological and mechanical properties at the level of unfilled UHMWPE and, at the same time, the melt flow index required for 3D printing by the fused deposition modeling method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.