Abstract
Blood and dialysate flow patterns in hollow-fiber dialyzers are complicated, and hence the flow patterns and mass transfer are difficult to analyze theoretically. Consequently, dialyzers are usually developed by a trial-and-error method. We attempt to design dialyzers by computer simulation analysis in this work. Blood-side and dialysate-side flows were modeled using the Hagen-Poiseuille equation and the Blake-Kozeny equation, respectively. These flow patterns were evaluated as pressure drop and velocity distribution. The mass transfer rate was evaluated as solute clearance. Computed values of the pressure drops and clearance for urea and vitamin B12 were found to agree closely with those obtained experimentally. We evaluated the influences of the inner diameter of hollow fibers, module geometry, and void fraction on the pressure drop and clearance, and computer-aided design was performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.