Abstract
The authors studied the effectiveness of using texture features derived from spatial grey level dependence (SGLD) matrices for classification of masses and normal breast tissue on mammograms. One hundred and sixty-eight regions of interest (ROIS) containing biopsy-proven masses and 504 ROIS containing normal breast tissue were extracted from digitized mammograms for this study. Eight features were calculated for each ROI. The importance of each feature in distinguishing masses from normal tissue was determined by stepwise linear discriminant analysis. Receiver operating characteristic (ROC) methodology was used to evaluate the classification accuracy. The authors investigated the dependence of classification accuracy on the input features, and on the pixel distance and bit depth in the construction of the SGLD matrices. It was found that five of the texture features were important for the classification. The dependence of classification accuracy on distance and bit depth was weak for distances greater than 12 pixels and bit depths greater than seven bits. By randomly and equally dividing the data set into two groups, the classifier was trained and tested on independent data sets. The classifier achieved an average area under the ROC curve, Az, of 0.84 during training and 0.82 during testing. The results demonstrate the feasibility of using linear discriminant analysis in the texture feature space for classification of true and false detections of masses on mammograms in a computer-aided diagnosis scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.