Abstract

Biomarkers are a class of measurable and evaluable indicators with the potential to predict disease initiation and progression. In contrast to disease-associated factors, biomarkers hold the promise to capture the changeable signatures of biological states. With methodological advances, computer-aided biomarker discovery has now become a burgeoning paradigm in the field of biomedical science. In recent years, the 'big data' term has accumulated for the systematical investigation of complex biological phenomena and promoted the flourishing of computational methods for systems-level biomarker screening. Compared with routine wet-lab experiments, bioinformatics approaches are more efficient to decode disease pathogenesis under a holistic framework, which is propitious to identify biomarkers ranging from single molecules to molecular networks for disease diagnosis, prognosis and therapy. In this review, the concept and characteristics of typical biomarker types, e.g. single molecular biomarkers, module/network biomarkers, cross-level biomarkers, etc., are explicated on the guidance of systems biology. Then, publicly available data resources together with some well-constructed biomarker databases and knowledge bases are introduced. Biomarker identification models using mathematical, network and machine learning theories are sequentially discussed. Based on network substructural and functional evidences, a novel bioinformatics model is particularly highlighted for microRNA biomarker discovery. This article aims to give deep insights into the advantages and challenges of current computational approaches for biomarker detection, and to light up the future wisdom toward precision medicine and nation-wide healthcare.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.