Abstract
Proppants are one of the key materials for hydraulic fracturing, whose main role is to support fractures and create a channel through which oil and gas can flow. The nature of proppants is the most talked about feature besides their cost, for example, their sphericity, turbidity, particle size, or strength. The porosity, permeability, and fracture conductivity of proppants in fractures are also the main indicators to measure the performance of them. These indicators are usually obtained through physical experiments. However, experimental results often differ depending on the experimental scheme. Different stacking methods of proppant particles lead to this phenomenon. The nature of proppant particles in fractures varies with the way they accumulate. This paper will start with the microscopic arrangement of proppant particles. Considering the randomness and certainty of three-dimensional particle stacking and arrangement, the Monte Carlo stochastic method and an optimization model were used to conduct three-dimensional computer simulation of proppant particles. This lays an important foundation for revealing the randomness and regularity of the micro arrangement of proppant particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.