Abstract

Several daily activities involve the accumulation or percolation of fluids through porous media. X-ray microtomography is a non-invasive technique capable of providing images of the internal microstructure of materials showing the different phases of fluid distribution present in the sample directly or at the pore-scale. This methodology was used to qualitatively and quantitatively assess samples consisting with glass beads of standard size, which contained fluid filling a porous region. Three samples were prepared with 0.6 mm or 0.8 mm diameter glass beads inserted into a glass tube with an inner diameter of 6.7 mm and 1.0 mm wall thickness. The fluids injected were dopant salt–water solution, industrial oil and commercial oil. The samples were scanned using a Skyscan-1172 microtomographic system. All phases present in the sample were differentiated. The values of injected fluids were determined through 2D and 3D analyses. Two types of solutions were used, one doped with KI, and the other with BaCl2·2H2O. The percentage of KI used allowed the individualization of the solution and, therefore, the direct quantification of this phase through 2D and 3D images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call