Abstract

This paper presents a neural computed torque controller, which employs to a Caterpillar robot manipulator. A description to exert a control method application neural network for nonlinear PD computed torque controller to a two sub-mechanisms Caterpillar robot manipulator. A nonlinear PD computed torque controller is obtained via utilizing a popular computed torque controller and using neural networks. The proposed controller has some advantages such as low control effort, high trajectory tracking and learning ability. The joint angles of two sub-mechanisms have been obtained by using the numerical simulations. The discovered figures show that the performance of the neural computed torque controller is better than a conventional computed torque controller in trajectory tracking and reduction of setting time. Finally, snapshots of gain sequences are demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call