Abstract

BackgroundSuboptimal total knee arthroplasty (TKA) position of both femoral and tibial components is thought to be linked with poor clinical outcomes, polyethylene wear and the “unexplained” painful knee arthroplasty. The aim of this study was to better understand the effect of implant orientation on knee implant performance. MethodsWe analyzed 30 retrieved contemporary TKA implants. Implant positioning measurements in the coronal plane were made prior to revision using a diagnostic algorithm, based on 3D computed tomography (CT) images. Each retrieved polyethylene component was imaged using a micro-CT scanner and a high resolution computational 3D model of each component was digitally reconstructed. The difference in thickness between medial and lateral components was calculated. Statistical analysis was performed to investigate the association between component positioning and damage patterns. ResultsWe found a significant correlation between both the tibiofemoral and femoral angles and difference in thickness between polyethylene compartments: varus angulations were strongly associated with thinner medial compartments, whilst valgus angulations were associated with thinner lateral compartments. Moreover, suboptimal tibiofemoral orientations and tibial component angulations were associated to greater differences in thickness between polyethylene compartments. ConclusionOur study is the first to compare accurate 3D CT measurements of prerevision TKA positioning in the coronal plane with postrevision retrieval analysis from innovative, accurate and highly reliable micro-CT–based method. Our results demonstrate the impact of component positioning on polyethylene damage and helps understanding of the in vivo performance of these implants. Level of EvidenceIII.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.