Abstract

BackgroundTo evaluate two-dimensional (2D) and three-dimensional (3D) computed tomography (CT) radiomics analysis for the T stage of esophageal squamous cell carcinoma (ESCC).Methods398 patients with pathologically confirmed ESCC were divided into training and testing sets. All patients underwent chest CT scans preoperatively. For each tumor, based on CT images, a 2D region of interest (ROI) was outlined on the largest cross-sectional area, and a 3D ROI was outlined layer by layer on each section of the tumor. The radiomics platform was used for feature extraction. For feature selection, stepwise logistic regression was used. The receiver operating characteristic (ROC) curve was used to assess the diagnostic performance of the 2D radiomics model versus the 3D radiomics model. The differences were compared using the DeLong test. The value of the clinical utility of the two radiomics models was evaluated.Results1595 radiomics features were extracted. After screening, two radiomics models were constructed. In the training set, the difference between the area under the curve (AUC) of the 2D radiomics model (AUC = 0.831) and the 3D radiomics model (AUC = 0.830) was not statistically significant (p = 0.973). In the testing set, the difference between the AUC of the 2D radiomics model (AUC = 0.807) and the 3D radiomics model (AUC = 0.797) was also not statistically significant (p = 0.748). A 2D model was equally useful as a 3D model in clinical situations.ConclusionThe performance of 2D radiomics model is comparable to that of 3D radiomics model in distinguishing between the T1-2 and T3-4 stages of ESCC. In addition, 2D radiomics model may be a more feasible option due to the shorter time required for segmenting the ROI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.