Abstract
ABSTRACTOsteoporosis causes bone fragility and elevates fracture risk. Applications of finite element (FE) analysis (FEA) for assessment of trabecular bone (Tb) microstructural strength at whole‐body computed tomography (CT) imaging are limited due to challenges with Tb microstructural segmentation. We present a nonlinear FEA method for distal tibia CT scans evading binary segmentation of Tb microstructure, while accounting for bone microstructural distribution. First, the tibial axis in a CT scan was aligned with the FE loading axis. FE cubic mesh elements were modeled using image voxels, and CT intensity values were calibrated to ash density defining mechanical properties at individual elements. For FEA of an upright volume of interest (VOI), the bottom surface was fixed, and a constant displacement was applied at each vertex on the top surface simulating different loading conditions. The method was implemented and optimized using the ANSYS software. CT‐derived computational modulus values were repeat scan reproducible (intraclass correlation coefficient [ICC] ≥ 0.97) and highly correlated (r ≥ 0.86) with the micro‐CT (μCT)‐derived values. FEA‐derived von Mises stresses over the segmented Tb microregion were significantly higher (p < 1 × 10−11) than that over the marrow space. In vivo results showed that both shear and compressive modulus for males were higher (p < 0.01) than for females. Effect sizes for different modulus measures between males and females were moderate‐to‐high (≥0.55) and reduced to small‐to‐negligible (<0.40) when adjusted for pure lean mass. Among body size and composition attributes, pure lean mass and height showed highest (r ∈ [0.45 0.56]) and lowest (r ∈ [0.25 0.39]) linear correlation, respectively, with FE‐derived modulus measures. In summary, CT‐based nonlinear FEA provides an effective surrogate measure of Tb microstructural stiffness, and the relaxation of binary segmentation will extend the scope for FEA in human studies using in vivo imaging at relatively low‐resolution. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.