Abstract

Background and study aims Pancreatitis is a potentially lethal adverse event of endoscopic transpapillary placement of a self-expandable metal stent (SEMS) for malignant biliary obstruction (MBO). Deep learning-based image recognition has not been investigated in predicting pancreatitis in this setting. Patients and methods We included 70 patients who underwent endoscopic placement of a SEMS for nonresectable distal MBO. We constructed a convolutional neural network (CNN) model for pancreatitis prediction using a series of pre-procedure computed tomography images covering the whole pancreas (≥ 120,960 augmented images in total). We examined the additional effects of the CNN-based probabilities on the following machine learning models based on clinical parameters: logistic regression, support vector machine with a linear or RBF kernel, random forest classifier, and gradient boosting classifier. Model performance was assessed based on the area under the curve (AUC) in the receiver operating characteristic analysis, positive predictive value (PPV), accuracy, and specificity. Results The CNN model was associated with moderate levels of performance metrics: AUC, 0.67; PPV, 0.45; accuracy, 0.66; and specificity, 0.63. When added to the machine learning models, the CNN-based probabilities increased the performance metrics. The logistic regression model with the CNN-based probabilities had an AUC of 0.74, PPV of 0.85, accuracy of 0.83, and specificity of 0.96, compared with 0.72, 0.78, 0.77, and 0.96, respectively, without the probabilities. Conclusions The CNN-based model may increase predictability for pancreatitis following endoscopic placement of a biliary SEMS. Our findings support the potential of deep learning technology to improve prognostic models in pancreatobiliary therapeutic endoscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.