Abstract

Computed tomography (CT) dramatically improved the capabilities of diagnostic and interventional radiology. Starting in the early 1970s, this imaging modality is still evolving, although tremendous improvements in scan speed, volume coverage, spatial and soft tissue resolution, as well as dose reduction have been achieved. Tube current modulation, automated exposure control, anatomy-based tube voltage (kV) selection, advanced x-ray beam filtration, and iterative image reconstruction techniques improved image quality and decreased radiation exposure. Cardiac imaging triggered the demand for high temporal resolution, volume acquisition, and high pitch modes with electrocardiogram synchronization. Plaque imaging in cardiac CT as well as lung and bone imaging demand for high spatial resolution. Today, we see a transition of photon-counting detectors from experimental and research prototype setups into commercially available systems integrated in patient care. Moreover, with respect to CT technology and CT image formation, artificial intelligence is increasingly used in patient positioning, protocol adjustment, and image reconstruction, but also in image preprocessing or postprocessing. The aim of this article is to give an overview of the technical specifications of up-to-date available whole-body and dedicated CT systems, as well as hardware and software innovations for CT systems in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call