Abstract
The potential for shrinkage of intraperitoneally implanted meshes for laparoscopic repair of ventral and incisional hernia (LRVIH) remains a concern. Numerous experimental studies on this issue reported very inconsistent results. Expanded polytetrafluoroethylene (ePTFE) mesh has the unique property of being revealed by computed tomography (CT). We therefore conducted an analysis of CT findings in patients who had previously undergone LRVIH with an ePTFE mesh (DualMesh, WL Gore, Flagstaff, AZ, USA) in order to evaluate the shrinkage of implanted meshes. Of 656 LRVIH patients with DualMesh, all patients who subsequently underwent CT scanning were identified and only those with precisely known transverse diameter of implanted mesh and with CT scans made more than 3 months postoperatively were selected (n = 40). Two radiologists who were blinded to the size of the implanted mesh measured in consensus the maximal transverse diameter of the meshes by using the AquariusNET program (TeraRecon Inc., San Mateo, CA, USA). Mesh shrinkage was defined as the relative loss of transverse diameter as compared with the original transverse diameter of the mesh. The mean time from LRVIH to CT scan was 17.9 months (range 3-59 months). The mean shrinkage of the mesh was 7.5% (range 0-23.7%). For 11 patients (28%) there was no shrinkage at all. Shrinkage of 1-10% was found in 16 patients (40%), of 10-20% in 10 patients (25%), and of 20-24% in 3 patients (7.5%). No correlation was found regarding the elapsed time between LRVIH and CT, and shrinkage. There were two recurrences, one possibly related to shrinkage. Our observations indicate that shrinkage of DualMesh is remarkably lower than has been reported in experimental studies (8-51%). This study is the first to address the problem of shrinkage after intraperitoneal implantation of synthetic mesh in a clinical material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.