Abstract
SummaryThis article evaluates the current support for heterogeneous OpenMP 5.2 applications regarding the simultaneous activation of host and device computing units (e.g., CPUs, GPUs, or FPGAs). The article identifies limitations in the current OpenMP specification and describes the design and implementation of novel OpenMP extensions and runtime support for heterogeneous parallel programming. The Compute Unit (CUs) abstraction is introduced in the OpenMP programming model. The Compute Unit abstraction is defined in terms of an aggregation of computing elements (e.g., CPUs, GPUs, FPGAs). On top of CUs, the article describes dynamic work sharing constructs and schedulers that address the inherent differences in compute power of host and device CUs. New constructs and the corresponding runtime support are described for the new abstractions. The article evaluates the case of a hybrid multilevel parallelization of the NPB‐MZ benchmark suite. The implementation exploits both coarse‐grain and fine‐grain parallelism, mapped to CUs of different nature (GPUs and CPUs). All CUs are activated using the new extensions and runtime support. We compare hybrid and nonhybrid executions under two state‐of‐the‐art work‐distribution schemes (Static and Dynamic Task schedulers). On a computing node composed of one AMD EPYC 7742 @ 2.250GHz (64 cores and 2 threads/core, totalling 128 threads per node) and 2 GPU AMD Radeon Instinct MI50 with 32GB, hybrid executions present speedups from 1.08 up to 3.18 with respect to a nonhybrid GPU implementation, depending on the number of activated CUs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.