Abstract
This paper presents multistate spatial wavefunction switched (SWS)-quantum dot channel (QDC) field-effect transistor (FET) static random access memory (SRAM)-based Compute-in-Memory (CIM) cell. The SWS-QDC FETs have two or more vertically stacked coupled quantum dot channels, and the spatial location of carriers within these channels is governed by the applied gate voltage. The location of the carriers can be utilized to encode multiple logic levels within a single device. The utilization of SWS-QDC FETs in CIM cell increases the data storage and energy-efficient computation in the memory. CIM reduces the data access time and improves performance for energy-efficient artificial intelligence (AI) edge devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of High Speed Electronics and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.