Abstract

In this paper, we consider a system in which multiple users communicate with a destination with the help of multiple half-duplex relays. Based on the compute-and-forward scheme, each relay, instead of decoding the users' messages, decodes an integer-valued linear combination that relates the transmitted messages. Then, it forwards the linear combination towards the destination. Given these linear combinations, the destination may or may not recover the transmitted messages since the linear combinations are not always full rank. Therefore, we propose an algorithm where we optimize the precoding factor at the users such that the probability that the equations are full rank is increased and that the transmission rate is maximized. We show, through some numerical examples, the effectiveness of our algorithm and the advantage of performing precoding allocation at the users. Also, we show that this scheme can outperform standard relaying techniques in certain regimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.