Abstract

This article gives upper bounds on the number of Fourier- Jacobi coecients that determine a paramodular cusp form in degree two. The level N of the paramodular group is completely general throughout. Additionally, spaces of Jacobi cusp forms are spanned by using the theory of theta blocks due to Gritsenko, Skoruppa and Zagier. We combine these two techniques to rigorously compute spaces of paramodular cusp forms and to verify the Paramodular Conjecture of Brumer and Kramer in many cases of low level. The proofs rely on a detailed description of the zero dimensional cusps for the subgroup of integral elements in each paramodular group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.