Abstract

The fractal-like finite element method (FFEM) is used to compute the stress intensity factors (SIFs) for different configurations of cracked/notched plates subject to in-plane shear and bending loading conditions. In the FFEM, the large number of unknown variables in the singular region around a notch tip is reduced to a small set of generalised co-ordinates by performing a fractal transformation using global interpolation functions. The use of exact analytical solutions of the displacement field around a notch tip as the global interpolation functions reduces the computational cost significantly and neither post-processing technique to extract SIFs nor special singular elements to model the singular region are required. The results of numerical examples of various configurations of cracked/notched plates are presented and validated via published data. Also, new results for cracked/notched plate problems are presented. These results demonstrate the accuracy and efficiency of the FFEM to compute the SIFs for notch problems under in-plane shear and bending loading conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call