Abstract

The correlation consistent composite approach (ccCA) is a model chemistry that has been shown to accurately compute gas-phase enthalpies of formation for alkali and alkaline earth metal oxides and hydroxides (Ho, D. S.; DeYonker, N. J.; Wilson, A. K.; Cundari, T. R. J. Phys. Chem. A 2006, 110, 9767). The ccCA results contrast to more widely used model chemistries where calculated enthalpies of formation for such species can be in error by up to 90 kcal mol-1. In this study, we have applied ccCA to a more general set of 42 s-block molecules and compared the ccCA DeltaHf values to values obtained using the G3 and G3B model chemistries. Included in this training set are water complexes such as Na(H2O)n+ where n = 1 - 4, dimers and trimers of ionic compounds such as (LiCl)2 and (LiCl)3, and the largest ccCA computation to date: Be(acac)2, BeC10H14O4. Problems with the G3 model chemistries seem to be isolated to metal-oxygen bonded systems and Be-containing systems, as G3 and G3B still perform quite well with a 2.7 and 2.6 kcal mol-1 mean absolute deviation (MAD), respectively, for gas-phase enthalpies of formation. The MAD of the ccCA is only 2.2 kcal mol-1 for enthalpies of formation (DeltaHf) for all compounds studied herein. While this MAD is roughly double that found for a ccCA study of >350 main group (i.e., p-block) compounds, it is commensurate with typical experimental uncertainties for s-block complexes. Some molecules where G3/G3B and ccCA computed DeltaHf values deviate significantly from experiment, such as (LiCl)3, NaCN, and MgF, are inviting candidates for new experimental and high-level theoretical studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.