Abstract

In optimization problems appearing in fields such as economics, finance, or engineering, it is often important that a risk measure of a decision-dependent random variable stays below a prescribed level. At the same time, the underlying probability distribution determining the risk measure's value is typically known only up to a certain degree and the constraint should hold for a reasonably wide class of probability distributions. In addition, the constraint should be computationally tractable. In this paper we review and generalize results on the derivation of tractable counterparts of such constraints for discrete probability distributions. Using established techniques in robust optimization, we show that the derivation of a tractable robust counterpart can be split into two parts, one corresponding to the risk measure and the other to the uncertainty set. This holds for a wide range of risk measures and uncertainty sets for probability distributions defined using statistical goodness-of-fit tests or pro...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.