Abstract

In this paper, a partial update Kalman Filter (PUKF) is presented for the real-time parameter estimation of a dc–dc switch mode power converter. The proposed estimation algorithm is based on a novel combination between the classical Kalman filter (KF) and an M-Max partial adaptive filtering technique. The proposed PUKF offers a significant reduction in computational effort compared to the conventional implementation of the KF, with 50% less arithmetic operations. Furthermore, the PUKF retains comparable overall performance to the classical KF. To demonstrate an efficient and cost effective explicit self-tuning controller, the proposed estimation algorithm (PUKF) is embedded with a Banyasz/Keviczky proportional, integral, derivative (PID) controller to generate a new computationally light self-tuning controller. Experimental and simulation results clearly show the superior dynamic performance of the explicit self-tuning control system compared to a conventional pole placement design based on a precalculated average model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call