Abstract

This paper presents a computationally efficient neuro-dynamic programming approximation method for the capacitated re-entrant line scheduling problem by reducing the number of feature functions. The method is based on a statistical assessment of the significance of the various feature functions. This assessment can be made by combining the weighted principal components with a thresholding algorithm. The efficacy of the new feature functions selected is tested by numerical experiments. The results indicate that the feature selection method presented here can extract a small number of significant features with the potential capability of providing a compact representation of the target value function in a neuro-dynamic programming framework. Moreover, the linear parametric architecture considered holds considerable promise as a way to provide effective and computationally efficient approximations for an optimal scheduling policy that consistently outperforms the heuristics typically employed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.