Abstract
Expeditionary airfield matting systems are lightweight, portable surfaces that enable the rapid deployment of infrastructure to support aircraft operations. Individual matting components are assembled via interlocking joints to construct arrays that serve as temporary aircraft operating surfaces. The paper outlines the homogenization of the AM2 portable airfield matting system and its interlocking mechanisms to permit computationally efficient analyses toward understanding mechanisms that influence the global behavior of these arrays and underlying subgrade during aircraft maneuvers. An equivalent orthotropic two-dimensional continuum was developed from finite element analysis of a detailed three-dimensional model and its flexural behavior was validated against experimental data and solid finite element models. Interlocking joints were characterized using node-to-node connector elements based on subscale finite element studies. Both components were implemented into a full-scale model representative of a typical test section, and responses to static high tire pressure aircraft loads were analyzed over a soil foundation representing a California bearing ratio of 6%, yielding promising agreement with experimental data. Results of this study reveal an inherent coupling between load transfer, mat deflection, and near-surface subgrade stress with dependence on tire location, mat core shear flexibility, and joint stiffness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.