Abstract

An analytical model which predicts the attenuation of ultrawide-band (UWB) signals as they traverse various inhomogeneous tissues is presented. The model provides a computationally e-cient method of determining the frequency-dependent losses encountered by electromagnetic radio frequency (RF) signals used to communicate with biomedical implants. Classic transmission line theory is employed to generate an analytical representation which models the inhomogeneous tissue using layers of homogeneous material. The proposed model was verifled experimentally with tests of both single and multilayer samples. A realistic abdominal implant scenario was also modeled and the predictions were verifled using a commercially available 3D electromagnetic (EM) simulator. The results of this study indicate that for deep implants the higher frequency portion of the UWB spectrum is attenuated much more strongly than the lower end of the band. This implies that for robust communication UWB signals targeting biomedical implants should be limited to the lower portion of the spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.