Abstract

The use of millimeter-wave (mm-wave) frequency bands for fifth-generation (5G) cellular mobile communications has led to intense interest from academia and industry over these spectrum resources. Despite extensive measurement campaigns and channel modeling efforts, there is a lack of deterministic backscattering models addressing the impact of the size and orientation of static scatterers on the radio channel. In this article, two 3-D computationally efficient models for calculating backscattering based on the Fresnel integrals and the error function are proposed and validated both against simulations and measurements. In addition, applying the same methodology, state-of-the-art mm-wave blockage (forward-scattering) models are modified to capture backscattered fields. Furthermore, both the introduced and the modified models preserve the structure of geometry-based stochastic channel models (GSCMs) and thus their implementation in system-level simulators is substantially beneficial due to their good accuracy and short computation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.